Econometric Analysis of Count Data

This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.
Non-Life Insurance Pricing with Generalized Linear Models

Reinsurance: Actuarial and Statistical Aspects provides a survey of both the academic literature in the field as well as challenges appearing in reinsurance practice and puts the two in perspective. The book is written for researchers with an interest in reinsurance problems, for graduate students with a basic knowledge of probability and statistics as well as for reinsurance practitioners. The focus of the book is on modelling together with the statistical challenges that go along with it. The discussed statistical approaches are illustrated alongside six case studies of insurance loss data sets, ranging from MTPL over fire to storm and flood loss data. Some of the presented material also contains new results that have not yet been published in the research literature. An extensive bibliography provides readers with links for further study.

Bayesian Claims Reserving Methods in Non-life Insurance with Stan

This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.

Reinsurance

The actuarial analysis of social protection schemes is a challenge that requires a delicate balancing act between the demographic, economic, financial, and actuarial fields. Actuarial Practice in Social Security addresses this challenge by providing a practical tool for actuaries to enhance and modernize their social protection systems while still maintaining this important balance. Offering a pragmatic and results-oriented approach, this volume presents technical material on valuation covering a wide-range of risks including old age, survivors, disability, sickness, maternity, employment injury, and unemployment. It offers a comprehensive, global picture of actuarial practice in social security and provides concrete examples of work done by actuaries in the field.

Regression Modeling with Actuarial and Financial Applications

This class-tested undergraduate textbook covers the entire syllabus for Exam C of the Society of Actuaries (SOA).

A Multivariate Claim Count Model for Applications in Insurance

The increasing complexity of insurance and reinsurance products has seen a growing interest amongst actuaries in the modelling of dependent risks. For efficient risk management, actuaries need to be able to answer fundamental questions
such as: Is the correlation structure dangerous? And, if yes, to what extent? Therefore tools to quantify, compare, and model the strength of dependence between different risks are vital. Combining coverage of stochastic order and risk measure theories with the basics of risk management and stochastic dependence, this book provides an essential guide to managing modern financial risk. * Describes how to model risks in incomplete markets, emphasising insurance risks. * Explains how to measure and compare the danger of risks, model their interactions, and measure the strength of their association. * Examines the type of dependence induced by GLM-based credibility models, the bounds on functions of dependent risks, and probabilistic distances between actuarial models. * Detailed presentation of risk measures, stochastic orderings, copula models, dependence concepts and dependence orderings. * Includes numerous exercises allowing a cementing of the concepts by all levels of readers. * Solutions to tasks as well as further examples and exercises can be found on a supporting website. An invaluable reference for both academics and practitioners alike, Actuarial Theory for Dependent Risks will appeal to all those eager to master the up-to-date modelling tools for dependent risks. The inclusion of exercises and practical examples makes the book suitable for advanced courses on risk management in incomplete markets. Traders looking for practical advice on insurance markets will also find much of interest.

Loss Distributions

Loss Models

An essential resource for constructing and analyzing advanced actuarial models Loss Models: Further Topics presents extended coverage of modeling through the use of tools related to risk theory, loss distributions, and survival models. The book uses these methods to construct and evaluate actuarial models in the fields of insurance and business. Providing an advanced study of actuarial methods, the book features extended discussions of risk modeling and risk measures, including Tail-Value-at-Risk. Loss Models: Further Topics contains additional material to accompany the Fourth Edition of Loss Models: From Data to Decisions, such as: Extreme value distributions Coxian and related distributions Mixed Erlang distributions Computational and analytical methods for aggregate claim models Counting processes Compound distributions with time-dependent claim amounts Copula models Continuous time ruin models Interpolation and smoothing The book is an essential reference for practicing actuaries and actuarial researchers who want to go beyond the material required for actuarial qualification. Loss Models: Further Topics is also an excellent resource for graduate students in the actuarial field.

Predictive Modeling Applications in Actuarial Science: Volume 1, Predictive Modeling Techniques
The volume presents innovations in data analysis and classification and gives an overview of the state of the art in these scientific fields and applications. Areas that receive considerable attention in the book are discrimination and clustering, data analysis and statistics, as well as applications in marketing, finance, and medicine. The reader will find material on recent technical and methodological developments and a large number of applications demonstrating the usefulness of the newly developed techniques.

Financial and Actuarial Statistics

This book provides an overview of classical actuarial techniques, including material that is not readily accessible elsewhere such as the Ammeter risk model and the Markov-modulated risk model. Other topics covered include utility theory, credibility theory, claims reserving and ruin theory. The author treats both theoretical and practical aspects and also discusses links to Solvency II. Written by one of the leading experts in the field, these lecture notes serve as a valuable introduction to some of the most frequently used methods in non-life insurance. They will be of particular interest to graduate students, researchers and practitioners in insurance, finance and risk management.

Encyclopedia of Quantitative Risk Analysis and Assessment

This monograph deals with econometric models for the analysis of event counts. The interest of econometricians in this class of models has started in the mid-eighties. After more than one decade of intensive research, the literature has reached a level of maturity that calls for a systematic and accessible exposition of the main results and methods. Such an exposition is the aim of the book. Count data models have found their way into the curricula of micro-econometric classes and are available on standard computer software. The basic methods have been used in countless applications in fields such as labor economics, health economics, insurance economics, urban economics, and economic demography, to name but a few. Other, more recent, methods are poised to become standard tools soon. While the book is oriented towards the empirical economists and applied econometrician, it should be useful to statisticians and biometricians as well. A first edition of this book was published in 1994 under the title "Count Data Models - Econometric Theory and an Application to Labor Mobility". While this edition keeps the character and broad organization of this first edition, and its emphasis on combining a summary of the existing literature with several new results and methods, it is substantially revised and enlarged. Many parts have been completely rewritten and several new sections have been added.

Handbook of Insurance
This handbook presents the basic aspects of actuarial loss reserving. Besides the traditional methods, it also includes a description of more recent ones and a discussion of certain problems occurring in actuarial practice, like inflation, scarce data, large claims, slow loss development, the use of market statistics, the need for simulation techniques and the task of calculating best estimates and ranges of future losses. In property and casualty insurance the provisions for payment obligations from losses that have occurred but have not yet been settled usually constitute the largest item on the liabilities side of an insurer's balance sheet. For this reason, the determination and evaluation of these loss reserves is of considerable economic importance for every property and casualty insurer. Actuarial students, academics as well as practicing actuaries will benefit from this overview of the most important actuarial methods of loss reserving by developing an understanding of the underlying stochastic models and how to practically solve some problems which may occur in actuarial practice.

Effective Statistical Learning Methods for Actuaries III

Enrique Castillo is a leading figure in several mathematical and engineering fields. Organized to honor Castillo’s significant contributions, this volume is an outgrowth of the "International Conference on Mathematical and Statistical Modeling," and covers recent advances in the field. Applications to safety, reliability and life-testing, financial modeling, quality control, general inference, as well as neural networks and computational techniques are presented.

Handbook on Loss Reserving

In this monograph, authors Greg Taylor and Gráinne McGuire discuss generalized linear models (GLM) for loss reserving, beginning with strong emphasis on the chain ladder. The chain ladder is formulated in a GLM context, as is the statistical distribution of the loss reserve. This structure is then used to test the need for departure from the chain ladder model and to consider natural extensions of the chain ladder model that lend themselves to the GLM framework.

Modern Actuarial Risk Theory

Health Insurance aims at filling a gap in actuarial literature, attempting to solve the frequent misunderstanding in regards to both the purpose and the contents of health insurance products (and ‘protection products’, more generally) on the one hand, and the relevant actuarial structures on the other. In order to cover the basic principles regarding health insurance techniques, the first few chapters in this book are mainly devoted to the need for health insurance and a description of insurance products in this area (sickness insurance, accident insurance, critical illness covers, income protection, long-term care insurance, health-related benefits as riders to life insurance policies). An introduction to general actuarial and risk-
management issues follows. Basic actuarial models are presented for sickness insurance and income protection (i.e. disability annuities). Several numerical examples help the reader understand the main features of pricing and reserving in the health insurance area. A short introduction to actuarial models for long-term care insurance products is also provided. Advanced undergraduate and graduate students in actuarial sciences; graduate students in economics, business and finance; and professionals and technicians operating in insurance and pension areas will find this book of benefit.

Pricing in General Insurance

Claims reserving is central to the insurance industry. Insurance liabilities depend on a number of different risk factors which need to be predicted accurately. This prediction of risk factors and outstanding loss liabilities is the core for pricing insurance products, determining the profitability of an insurance company and for considering the financial strength (solvency) of the company. Following several high-profile company insolvencies, regulatory requirements have moved towards a risk-adjusted basis which has lead to the Solvency II developments. The key focus in the new regime is that financial companies need to analyze adverse developments in their portfolios. Reserving actuaries now have to not only estimate reserves for the outstanding loss liabilities but also to quantify possible shortfalls in these reserves that may lead to potential losses. Such an analysis requires stochastic modeling of loss liability cash flows and it can only be done within a stochastic framework. Therefore stochastic loss liability modeling and quantifying prediction uncertainties has become standard under the new legal framework for the financial industry. This book covers all the mathematical theory and practical guidance needed in order to adhere to these stochastic techniques. Starting with the basic mathematical methods, working right through to the latest developments relevant for practical applications; readers will find out how to estimate total claims reserves while at the same time predicting errors and uncertainty are quantified. Accompanying datasets demonstrate all the techniques, which are easily implemented in a spreadsheet. A practical and essential guide, this book is a must-read in the light of the new solvency requirements for the whole insurance industry.

Innovations in Classification, Data Science, and Information Systems

This monograph presents a time-dynamic model for multivariate claim counts in actuarial applications. Inspired by real-world claim arrivals, the model balances interesting stylized facts (such as dependence across the components, over-dispersion and the clustering of claims) with a high level of mathematical tractability (including estimation, sampling and convergence results for large portfolios) and can thus be applied in various contexts (such as risk management and pricing of (re-)insurance contracts). The authors provide a detailed analysis of the proposed probabilistic model, discussing its relation to the existing literature, its statistical properties, different estimation strategies as well as possible applications and extensions. Actuaries and researchers working in risk management and premium pricing will find this book particularly
interesting. Graduate-level probability theory, stochastic analysis and statistics are required.

Generalized Linear Models for Insurance Rating

This monograph presents a time-dynamic model for multivariate claim counts in actuarial applications. Inspired by real-world claim arrivals, the model balances interesting stylized facts (such as dependence across the components, over-dispersion and the clustering of claims) with a high level of mathematical tractability (including estimation, sampling and convergence results for large portfolios) and can thus be applied in various contexts (such as risk management and pricing of (re-)insurance contracts). The authors provide a detailed analysis of the proposed probabilistic model, discussing its relation to the existing literature, its statistical properties, different estimation strategies as well as possible applications and extensions. Actuaries and researchers working in risk management and premium pricing will find this book particularly interesting. Graduate-level probability theory, stochastic analysis and statistics are required.

Stochastic Loss Reserving Using Generalized Linear Models

Understand Up-to-Date Statistical Techniques for Financial and Actuarial Applications

Since the first edition was published, statistical techniques, such as reliability measurement, simulation, regression, and Markov chain modeling, have become more prominent in the financial and actuarial industries. Consequently, practitioners and students must ac

Actuarial Modelling of Claim Counts

Devoted to the problem of fitting parametric probability distributions to data, this treatment uniquely unifies loss modeling in one book. Data sets used are related to the insurance industry, but can be applied to other distributions. Emphasis is on the distribution of single losses related to claims made against various types of insurance policies. Includes five sets of insurance data as examples.

Nonlife Actuarial Models

Predictive modeling involves the use of data to forecast future events. It relies on capturing relationships between explanatory variables and the predicted variables from past occurrences and exploiting this to predict future outcomes. Forecasting future financial events is a core actuarial skill - actuaries routinely apply predictive-modeling techniques in insurance and other risk-management applications. This book is for actuaries and other financial analysts who are developing their expertise in statistics and wish to become familiar with concrete examples of predictive modeling. The
book also addresses the needs of more seasoned practising analysts who would like an overview of advanced statistical topics that are particularly relevant in actuarial practice. Predictive Modeling Applications in Actuarial Science emphasizes lifelong learning by developing tools in an insurance context, providing the relevant actuarial applications, and introducing advanced statistical techniques that can be used by analysts to gain a competitive advantage in situations with complex data.

Health Insurance

This new edition of the Handbook of Insurance reviews the last forty years of research developments in insurance and its related fields. A single reference source for professors, researchers, graduate students, regulators, consultants and practitioners, the book starts with the history and foundations of risk and insurance theory, followed by a review of prevention and precaution, asymmetric information, risk management, insurance pricing, new financial innovations, reinsurance, corporate governance, capital allocation, securitization, systemic risk, insurance regulation, the industrial organization of insurance markets and other insurance market applications. It ends with health insurance, longevity risk, long-term care insurance, life insurance financial products and social insurance. This second version of the Handbook contains 15 new chapters. Each of the 37 chapters has been written by leading authorities in risk and insurance research, all contributions have been peer reviewed, and each chapter can be read independently of the others.

Solutions Manual for Actuarial Mathematics for Life Contingent Risks

The volume presents innovations in data analysis and classification and gives an overview of the state of the art in these scientific fields and applications. Areas that receive considerable attention in the book are discrimination and clustering, data analysis and statistics, as well as applications in marketing, finance, and medicine. The reader will find material on recent technical and methodological developments and a large number of applications demonstrating the usefulness of the newly developed techniques.

Stochastic Claims Reserving Methods in Insurance

This book is for actuaries and financial analysts developing their expertise in statistics and who wish to become familiar with concrete examples of predictive modeling.

Journal of the American Statistical Association
This text introduces the commonly used, basic approaches for reserving and ratemaking in General Insurance. The methods are described through detailed examples that are linked from one chapter to another to illustrate their practical application. Also, professionalism requirements and standards of practice are presented to set the context for the methods and examples.

Actuarial Theory for Dependent Risks

This must-have manual provides solutions to all exercises in Dickson, Hardy and Waters' Actuarial Mathematics for Life Contingent Risks, the groundbreaking text on the modern mathematics of life insurance that is the required reading for the SOA Exam MLC and also covers more or less the whole syllabus for the UK Subject CT5 exam. The more than 150 exercises are designed to teach skills in simulation and projection through computational practice, and the solutions are written to give insight as well as exam preparation. Companion spreadsheets are available for free download to show implementation of computational methods.

Actuarial Practice in Social Security

Introductory Stochastic Analysis for Finance and Insurance

Based on the syllabus of the actuarial industry course on general insurance pricing — with additional material inspired by the author’s own experience as a practitioner and lecturer — Pricing in General Insurance presents pricing as a formalised process that starts with collecting information about a particular policyholder or risk and ends with a commercially informed rate. The main strength of this approach is that it imposes a reasonably linear narrative on the material and allows the reader to see pricing as a story and go back to the big picture at any time, putting things into context. Written with both the student and the practicing actuary in mind, this pragmatic textbook and professional reference: Complements the standard pricing methods with a description of techniques devised for pricing specific products (e.g., non-proportional reinsurance and property insurance) Discusses methods applied in personal lines when there is a large amount of data and policyholders can be charged depending on many rating factors Addresses related topics such as how to measure uncertainty, incorporate external information, model dependency, and optimize the insurance structure Provides case studies, worked-out examples, exercises inspired by past exam questions, and step-by-step methods for dealing concretely with specific situations Pricing in General Insurance delivers a practical introduction to all aspects of general insurance pricing, covering data preparation, frequency analysis, severity analysis, Monte Carlo simulation for the calculation of aggregate losses, burning cost analysis, and more.
Fundamentals of Actuarial Mathematics

Non-life insurance pricing is the art of setting the price of an insurance policy, taking into consideration various properties of the insured object and the policy holder. Introduced by British actuaries, generalized linear models (GLMs) have become today the standard approach for tariff analysis. The book focuses on methods based on GLMs that have been found useful in actuarial practice and provides a set of tools for a tariff analysis. Basic theory of GLMs in a tariff analysis setting is presented with useful extensions of standard GLM theory that are not in common use. The book meets the European Core Syllabus for actuarial education and is written for actuarial students as well as practicing actuaries. To support reader real data of some complexity are provided at www.math.su.se/GLMbook.

Computation and Modelling in Insurance and Finance

Incorporates the many tools needed for modeling and pricing in finance and insurance. Introductory Stochastic Analysis for Finance and Insurance introduces readers to the topics needed to master and use basic stochastic analysis techniques for mathematical finance. The author presents the theories of stochastic processes and stochastic calculus and provides the necessary tools for modeling and pricing in finance and insurance. Practical in focus, the book’s emphasis is on application, intuition, and computation, rather than theory. Consequently, the text is of interest to graduate students, researchers, and practitioners interested in these areas. While the text is self-contained, an introductory course in probability theory is beneficial to prospective readers. This book evolved from the author’s experience as an instructor and has been thoroughly classroom-tested. Following an introduction, the author sets forth the fundamental information and tools needed by researchers and practitioners working in the financial and insurance industries: * Overview of Probability Theory * Discrete-Time stochastic processes * Continuous-time stochastic processes * Stochastic calculus: basic topics The final two chapters, Stochastic Calculus: Advanced Topics and Applications in Insurance, are devoted to more advanced topics. Readers learn the Feynman-Kac formula, the Girsanov’s theorem, and complex barrier hitting times distributions. Finally, readers discover how stochastic analysis and principles are applied in practice through two insurance examples: valuation of equity-linked annuities under a stochastic interest rate environment and calculation of reserves for universal life insurance. Throughout the text, figures and tables are used to help simplify complex theory and processes. An extensive bibliography opens up additional avenues of research to specialized topics. Ideal for upper-level undergraduate and graduate students, this text is recommended for one-semester courses in stochastic finance and calculus. It is also recommended as a study guide for professionals taking Causality Actuarial Society (CAS) and Society of Actuaries (SOA) actuarial examinations.

Modelling Mortality with Actuarial Applications
Leading the way in this field, the Encyclopedia of Quantitative Risk Analysis and Assessment is the first publication to offer a modern, comprehensive and in-depth resource to the huge variety of disciplines involved. A truly international work, its coverage ranges across risk issues pertinent to life scientists, engineers, policy makers, healthcare professionals, the finance industry, the military and practising statisticians. Drawing on the expertise of world-renowned authors and editors in this field this title provides up-to-date material on drug safety, investment theory, public policy applications, transportation safety, public perception of risk, epidemiological risk, national defence and security, critical infrastructure, and program management. This major publication is easily accessible for all those involved in the field of risk assessment and analysis. For ease-of-use it is available in print and online.

Risk Theory

This book provides a comprehensive introduction to actuarial mathematics, covering both deterministic and stochastic models of life contingencies, as well as more advanced topics such as risk theory, credibility theory and multi-state models. This new edition includes additional material on credibility theory, continuous time multi-state models, more complex types of contingent insurances, flexible contracts such as universal life, the risk measures VaR and TVaR. Key Features: Covers much of the syllabus material on the modeling examinations of the Society of Actuaries, Canadian Institute of Actuaries and the Casualty Actuarial Society. (SOA-CIA exams MLC and C, CSA exams 3L and 4.) Extensively revised and updated with new material. Orders the topics specifically to facilitate learning. Provides a streamlined approach to actuarial notation. Employs modern computational methods. Contains a variety of exercises, both computational and theoretical, together with answers, enabling use for self-study. An ideal text for students planning for a professional career as actuaries, providing a solid preparation for the modeling examinations of the major North American actuarial associations. Furthermore, this book is highly suitable reference for those wanting a sound introduction to the subject, and for those working in insurance, annuities and pensions.

A Multivariate Claim Count Model for Applications in Insurance

This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance. It simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous yet accessible. Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting. Requiring only a basic knowledge of statistics, this book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning. This is the third of three volumes
entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.

Fundamentals of General Insurance Actuarial Analysis

There are a wide range of variables for actuaries to consider when calculating a motorist’s insurance premium, such as age, gender and type of vehicle. Further to these factors, motorists’ rates are subject to experience rating systems, including credibility mechanisms and Bonus Malus systems (BMSs). Actuarial Modelling of Claim Counts presents a comprehensive treatment of the various experience rating systems and their relationships with risk classification. The authors summarize the most recent developments in the field, presenting ratemaking systems, whilst taking into account exogenous information. The text: Offers the first self-contained, practical approach to a priori and a posteriori ratemaking in motor insurance. Discusses the issues of claim frequency and claim severity, multi-event systems, and the combinations of deductibles and BMSs. Introduces recent developments in actuarial science and exploits the generalised linear model and generalised linear mixed model to achieve risk classification. Presents credibility mechanisms as refinements of commercial BMSs. Provides practical applications with real data sets processed with SAS software. Actuarial Modelling of Claim Counts is essential reading for students in actuarial science, as well as practicing and academic actuaries. It is also ideally suited for professionals involved in the insurance industry, applied mathematicians, quantitative economists, financial engineers and statisticians.

Predictive Modeling Applications in Actuarial Science

This book first provides a review of various aspects of Bayesian statistics. It then investigates three types of claims reserving models in the Bayesian framework: chain ladder models, basis expansion models involving a tail factor, and multivariate copula models. For the Bayesian inferential methods, this book largely relies on Stan, a specialized software environment which applies Hamiltonian Monte Carlo method and variational Bayes.

Advances in Mathematical and Statistical Modeling

This practical introduction outlines methods for analysing actuarial and financial risk at a fairly elementary mathematical level suitable for graduate students, actuaries and other analysts in the industry who could use simulation as a problem solver. Numerous exercises with R-code illustrate the text.
Loss Models

Innovations in Classification, Data Science, and Information Systems

Modern mortality modelling for actuaries and actuarial students, with example R code, to unlock the potential of individual data.

Generalized Linear Models for Insurance Data

This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.

Effective Statistical Learning Methods for Actuaries I

Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and.